Donate

The Waste Crisis

According to the EPA, Americans generated about 254 million tons of trash, of which 87 million tons, or about 34%, was recycled and composted. Waste generation has increased to about 4.4 pounds a day per person with 1.5 pounds being composted or recycled. Most of that waste ends up in a landfill, in essence a relatively inexpensive, earth moving operation. The downside of using landfills is that they remove valuable lands from other uses for generations to come, and because decomposition generates explosive methane gas, and waste settles over time, it is impossible to build any structure over landfills once they are closed. The situation is exacerbated since most landfills are located close to urban centers where development pressure is greatest.

But let’s have a look what happens inside a landfill. As it turns out, the waste is not as dormant as it may appear, but has a life of its own instead. Deep inside microbes are feeding on organic materials and produce chemical changes. Settlement takes place as the lower parts of the landfill are compressed by the weight above.

Infiltrating rainwater leaches heavy metals, PCBs, lead, solvents, dioxin, DDT, benzene, CFCs, furans from the myriad of products and substances dumped in the landfill, forming a contaminated liquid that sooner or later percolates downward and – unless we install some barriers – pollutes the underlying ground water. Today, around 45,000 different chemicals are produced and about 1,000 new ones are added each year.  Unfortunately, many of these substances are toxic and can damage parts of the complex and fragile environmental web. And equally disconcerting, many of chemicals find their way into our landfills. Even modern landfills with liners and leachate collection systems are a problem.  If they are not leaking now, they will probably start leaking within a few decades of their closure.  The use of modern technology simply postpones the inevitable.

In addition to the leachate, landfills also cause atmospheric pollution. The decomposition processes release gases such as methane, carbon, dioxide, vinyl chloride and hydrogen sulphide, which slowly seep into the air around the landfill. This impairs air quality in the immediate vicinity and, on a larger scale, contributes to greenhouse effect and global warming.

The production of consumer goods and their distribution to the customer make full use of the latest technological development, while the disposal of the remains is still carried out on stone-age-level. Landfills do not only represent an unproductive land use but also fail to meet the sustainability principle.

In the production and consumption of the myriad of products few seem to care what happens at the end of their utility range. Never before and by no previous society have comparable large amounts of products and such dangerous substances been converted in such a short time into waste. In order to avoid a total waste crisis, the engineering in production must be complemented by an efficient and non-polluting waste management, which aims to minimize waste at the source, in the production process, and transforms the inevitable remaining wastes into relatively harmless substances that can be safely absorbed in soil, water and air.

When considering the costs, decision makers more often than not, focus on the short-term cost of landfills when compared to incineration or waste-to-energy conversion plants. What is frequently omitted is the fact that landfills are effectively permanent facilities, which, unlike incineration or conversion plants, can not be easily after 30-50 years to make room for more advanced technologies or entirely different uses. In fact, while the land used for an incinerator/conversion plant could be sold and used for other purposes, landfills will need to be monitored and maintained for centuries after they close.

The most crucial factor is however, that the costs of damage to the environment, the value of Earth’s natural ecosystems and the services they provide are not fully captured in commercial markets in the way economic services and manufactured commodities are valued. To properly reflect the value of Earth’s ecosystems, additional cost factors should be included in the financial analysis of waste management facilities. For example, landfill costs should be increased to account for the permanent loss of land resources, the exposure of groundwater to leachate, and the atmospheric pollution caused by gas emissions.

Many of the processes and technologies needed to create a circular economy are available today or within reach. What’s lacking is our resolve and determination to change course.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Scientia potentia est. Knowledge is power.

Today we face an increasing chorus of anti-science voices rampant in politics, schools, the doctor’s office and the public. It seems an increasing number of people don’t appreciate science’s relevance; they think it’s a bad word, that it ruins things, that it’s for someone else to do. Many never met a scientist.

For us scientists, our research pursuits are incredibly important. We don’t consider it a job, it’s our life, and we invest everything into it. We are passionate, purposeful and relentless in the pursuit of our objectives. We like questions. We like answers. We like knowledge. We like to understand.

But science permeates your lives, too. It is much more than an intellectual exercise because it leads to a deeper understanding of the world and its basic mechanisms, and function. Science also teaches us to care about the world. Generally, understanding begets caring.

Most of science consists of answering very small questions.  Each one may not have much value in and of itself, but when the whole picture is to be seen, the importance of each of those small pixels of knowledge quickly become evident. Research aimed only at solving a specific, well-understood short-term problem is not going to provide us with the answers we need ten or twenty years from now. We need to commit some fraction of our resources, our dollars, to basic science, understanding that it is a risk taking investment; not all science hunches pay off, but when they pay off they pay off big.

Seems straightforward, and yet many believe their lives are not touched by science at all.  Perhaps herein lies the fundamental challenge: how to get people enthused about a subject if they don’t see any value or connection to themselves.

Take solid waste for example. Most people do not spend a second thought on what happens to all the stuff they throw away and yet science is once again standing ready to figure out how to best deal with its generation, prevention, characterization, monitoring, treatment, handling, reuse and ultimate residual disposition.

By linking worldwide data on solid waste, population density, and economic status, scientists figured out that of the 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, 4.8 to 12.7 million metric tons entering the ocean. Without waste management infrastructure improvements, the cumulative quantity of plastic waste entering the ocean is predicted to increase by an order of magnitude by 2025.

Science has already played a major role in reducing waste, recycle precious raw materials, develop waste to energy conversions, and use bioremediation to prevent toxic substances from entering natural cycles.

Or take sea level rise, which is likely to cause mass migrations that will affect not just the United States’ East Coast, but reshape communities deep in the heart of the country, according to research published in the journal Nature Climate Change. People leaving heavily populated coastal communities inundated by flooding will relocate across the U.S. by 2100, including to landlocked states such as Arizona and Wyoming that are unprepared to accommodate this wave of coastal migrants. We do not exactly know what is going to happen but the important point is that only through research will we find out and can then develop tools and strategies to accommodate all those people who will be displaced from their homes due to sea level rise.

Modern science not only builds spaceships and manipulates atoms, but it also helps people to live and work in a more satisfying and healthy manner. It is not only present when a doctor prescribes a new medicine, but also when you eat potato chips, use a cell phone, or when you asked to wear a mask to help limit there spread of the corona virus.

Science is both fascinating and mysterious. Science is for everyone, everybody uses science, and everyone needs science! It is our collective responsibility to illustrate the very large role scientific research plays in the daily life of every person!

So let’s stand up for Science together. March for Science. Support Science. Scientia potentia est. Knowledge is power. Always.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

A Short History of Solid Waste Management

No question, we are a wasteful species on planet Earth.

The explosive population growth combined with an increasing appetite for consumer goods, has led to an explosion in the amount of garbage we produce. Virtually every aspect of our daily lives generates waste, and it is impossible to think of any man-made process that does not create some waste. The spectrum ranges from refuse produced by all of us in our daily lives, to highly toxic industrial wastes from the production of specialized goods such as cars, electronics computers, cell phones and plastics. What happens to all this waste?

Some is recycled and re-introduced into the production cycle. Some is incinerated, and when this leads to the generation of electricity, useful steam or heat, it can be considered a form of recycling, or more appropriately, a conversion of waste to energy. The remaining waste winds up, as it has over the last three millennia, in a landfill. This basic method of placing garbage in large pits and cover it, at intervals, with layers of earth as remained relatively unchanged.

In Athens (500 B.C.) it was it was the responsibility of each household to taking their garbage to the disposal site located at a minimum of 1.5 kilometers from the city walls.  With the Roman Empire, came the first garbage collection service. People threw their refuse into the streets from where it transported to an open pit, often located within the community, by horse-pulled carts. Centuries with no organized waste collection followed. Land was plentiful and people were few, and so garbage was simply dumped in convenient places and forgotten. By the 1700s, refuse had become a major problem: waste was still dumped in the streets and open burning of garbage was a common practice. And yet, it took another 150 years before scientific reports linking disease to filthy environmental conditions finally helped launch the ‘age of sanitation’.

In the United States, the modern concept of solid waste management first emerged in the 1890s. By the turn of the 20th century, a growing number of American cities provided at least a rudimentary level of solid waste collection and disposal, and around 1930 virtually all cities offered garbage collection services.  Once removed from urban centers, the wastes were disposed of in a variety of ways, including landfills, incineration, water and, ocean disposal. The latter was outlawed 1933, however industrial and commercial wastes were exempted.

The post World War II era led to a significant escalation of the waste management problem for two reasons: consumerism (over-consumption) and the rise of the chemical age, which, together, resulted in dramatic changes in waste volumes, composition and toxicity.

The 1950s also brought us the so-called Sanitary Landfill, typically defined as an engineered method of disposing solid wastes on land by spreading the waste in thin layers, compacting it to the smallest practical volume and covering it with soil at the end of each working day. But despite the new terminology, it remained in essence an earth moving operation.

That only changed in the 1970s and 1980s, when people recognized that landfills were causing significant contamination of groundwater. The problem was compounded by the fact that once groundwater becomes contaminated it is exceedingly difficult to remediate.

As a result, a number of features were added.  Bottom liners made of clays or synthetic materials such as impermeable high-density polyethylene were introduced to stop leachate from leaving the landfill.  Caps made of similar materials were placed over the landfill to decrease the infiltration of precipitation.  In addition, engineered collection systems were installed to capture leachate and gas. Monitoring of groundwater, surface water, and gas emissions became a routine part of landfill operations.

Despite all the improvement we have made to siting and operating landfills, the real problem is simply their large numbers and the expanses of valuable real estate they occupy. All along, landfills have been a child of convenience. Time has come to develop and implement waste management systems that do not impair our environment, use up valuable resources, or place limitations on future resources.

Public involvement is essential.  Wastes are very democratic – they are produced by each and every one of us and so we all should contribute to the solution. The objective must be to minimize the impact on the environment through a combined strategy of reduction/reuse/recycling, and incineration and/or waste to energy conversion. Instead being the first choice, landfills will have to become the last resort.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Why It Is Important To Study Wild Dolphins

Most people love whales and dolphins. They think of them as intelligent creatures. They have heard stories of dolphins coming to the aid of stranded sailors, guiding swimmers back to shore and engaging in cooperative hunting with local fishermen. They feel whales and dolphins are important. And they are right! Maybe more than you might think!

Whales and dolphins embody most of what we need to understand about oceans. They are predators at the top of the food chain and can tell us a lot about what is important in the ocean; where are sites of high productivity, what is the most energy efficient way to travel, and what are the best senses to use in the water.

Because of their complex behavior and social structure, whales and dolphins are especially interesting. But they also offer us a window into the physiological and anatomical adaptations to aquatic life; information we can apply to echolocation and boat sonar. More than valuable intellectual exercises, these studies help us understand phenomena such as population decline, recovery, and extinction, and teach us to care about the world. Generally, understanding begets caring.

Further, whales and dolphins are a vibrant part of the global ecosystem and their populations have been severely affected by, and continue to be extremely vulnerable to human impact, including interactions with fisheries and whaling. Above all, marine pollution and habitat degradation looms as the most menacing threats of all. If we have any philosophical leanings towards preserving nature, either for future generations or for its own value, than learning enough to prevent this damage is crucial.

Lastly, whales and dolphins, are the archetypal ‘charismatic mega-vertebrates’. Throughout centuries, whales and dolphins have played major roles in myths and legends. Every culture that has come into contact with an ocean, have created myths and legends about how whales and/or dolphins came into being, and what their existence means to the world and to us.

In our times, whales and dolphins have come so symbolize, more than any other species, the concern for the environment and have become a special symbol of sharing the earth. People react to them with empathy and express concern for their welfare. They epitomize and illustrate many of the problems humans inflict on the sea. They engender, in people who might not otherwise care, a wish to improve the ‘health’ of the marine environment. The huge interest in these animals can therefore be used to encourage interest in the sea more generally, with whales and dolphins becoming flagships or ambassadors of the oceans.

All that makes it important to study these wonderful creatures. If you understand dolphin echolocation and how it works, then you have the tools to apply that knowledge. If you are a conservationist and are concerned about dolphin entanglement in nets, knowledge allows you to reduce that risk. The application of the knowledge depends on what you value: for an academic, to further knowledge and understanding; for an applied researcher, to be able to provide information to managers on the implications of a range of management options, for a conservation biologist: to find ways of ensuring the health of populations and habitats.

For more than thirty years, bottlenose dolphins (Tursiops truncatus) have been studied along the west coast of the United States, the Gulf of Mexico and along the eastern sea border, from the Carolinas to the southern tip of Florida. I have been involved with Coastal Dolphin Conservation through the Palm Beach Dolphin project of the Taras Oceanographic Foundation, headquartered in Jupiter, Florida. This project provides critical information on coastal dolphin communities, their lives and societies and shed light on how the health of these top predators, and the conditions of the natural resources they depend on, may directly or indirectly impact our own health and well-being.

In light of the enormous impact whales and dolphins have on humans and their lives, it is not difficult to understand why studying them serves the support of all of us. Search the Internet for the word dolphin sometime and see how many ‘hits’ you get. People believe that whales and dolphins have value and people put their money in things they hold interesting.

Why do dolphins hear sounds up to 150kHz while we hear only to 15? What is there to listen to anyway? Why do only male humpback whales sing and why don’t females? What directs Humpback whales in Hawaii to swim directly north in the summer? How do they know which way is North? Do dolphins ‘see’ an image in their brain from echolocation signals that is similar to what we see with our eyes? Does a dolphin think, and if he does, what does he think about? Do whales dream? Why are blue whales the biggest animals that have ever lived on earth? Why do dolphins have pointy rostrums? But most importantly why does anyone care about the answers to these questions? The main point is that people do care, and this is why we should all take a stand, and invest our time and money into understanding and protecting these marvelous marine mammals. No doubt, life is better with dolphins around.

Read more