Donate

Ocean Sentinels Club

Archaeocetes

Well, we can’t exactly tell you what archaeocetes were, but we can tell you what they were not. They were not filter-feeders like the baleen whales (mysticetes), and they had no form of echolocation, as the toothed whales (odontocetes) do. There are very few clues, but we believe they are not categorized by any unique characteristic.

We know they lived from 50 to 35 million years ago (the eocene period) after which they somewhat abruptly disappeared (geologically speaking, that is). Evidence of their existence has been found in all parts of the world. Archaeocetes probably spent some time on land, and some time in shallow coastal waters, feeding in the tidal zone. There is some debate about whether or not the archaeocetes were the evolutionary predecessor to the odontocetes and mysticetes, but either way there is no doubt that the odontocetes and the mysticetes flourished once the archaeocetes disappeared.

Research has shown that two separate families of cetaceans existed then: the Protocetidae were small-bodied animals, less than 3meters long (9 feet), with their nostrils just behind the tip of their long, slender snout and their teeth not unlike those of a wolf. The Basilosauridae was a medium-sized cetacean, ranging in length from 15-20 meters (45 to 60 feet) in length. This was a rather serpentine animal with un-fused vertebrae, allowing for great mobility in all directions. They had a defined rostrum, but no melon (bulge on the front of their head), and small hind, somewhat useless, legs. They were foragers and lived of fish. It is believed that they hauled themselves out of the water onto beaches to breed, in a way similar to that of seals. The first of these two families disappeared nearly 50 million years ago, and the second family disappeared about 40 million years ago.

Among the archaeocetes were also distinct types of dolphins. Although they were very easily recognized as dolphin in appearance and lifestyle, we would say they both had a very primitive air about them. Both animals were about average in size and used a limited form of echolocation. The Kentriodontids were foragers, similar to the modern-day bottlenose dolphins. The Squalidontids had very long rostrums (beaks) and triangular, serrated teeth (similar to shark teeth). It is believed that they had a very active carnivorous lifestyle, not unlike that of the killer whale. What an interesting appearance they must have had, with their blowhole situated at an odd, forward angle, atop but near the front of their heads. Five or six million years ago both these families disappeared, after sharing the planet for about 25 million years. The reason for their disappearance remains a mystery.

Today, we recognize 14 species of baleen whale including the blue, bowhead, right, humpback, minke and grey whale. Baleen whales are generally larger than toothed whales except for the sperm whale which is very big and has teeth. Depending on the source, tooth whales comprise 69 – 76 species and 6 – 10 families.

The two dolphins most frequently encountered in our study area (off Palm Beach County) are the bottlenose dolphin. And the Atlantic spotted dolphin, both members of the family Delphinidae.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

 

Read more

Atlantic Spotted Dolphins -Basic Knowledge

The Atlantic spotted dolphin is considered playful and acrobatic. They love to ride the bow wave of boats and surf the wake of ships they encounter. They are also more likely to approach humans than other dolphin species and become easily habituated to human activity in the wild, but do not survive in captivity.

PHYSICAL DESCRIPTION
Spotted dolphins are difficult to describe because their size and coloring vary according to their geographic location. Found only in tropical waters, and subtropical waters, there are two recognized species: the Atlantic spe¬cies, Stenella frontalis, and the worldwide species, the pan-tropical spotted dolphin, Stella attenuata. Their long slim beak con¬tains 35 to 48 small conical teeth in each side of the upper jaw and 34 to 47 small, conical teeth in each side of the lower jaw.

COLOR
Spotted dolphins change their coloration as they mature. Newborn calves are dark gray with a white belly (two-tones). As the animal grows older, dark spots begin to appear. First dark spots appear on the lower part of the body (speckled). When sexually mature, light spots begin to appear on the dark upper portion of the body (mottled). Eventually, the spots merge into almost solid color patterns (fused). This color pattern process is a visual indicator of the age of the dolphin.

FINS AND FLUKES
The dorsal (top) fin is tall and curved; the flippers are small and pointed. The flukes are small and pointed at the tips with a small median notch.

LENGTH AND WEIGHT
Length averages about 7 feet (2.1 m); weight averages 220 pounds (100 kg). Calves are 32 to 36 inches (80 to 90 cm) at birth.

FEEDING
Spotted dolphins feed on many varieties of fish and squid found in various water depths. They also feed on small fish and eels found buried in the sand in shallow waters.

MATING AND BREEDING
This species reaches maturity between 6 and 8 years of age or when the animal is about 6.5 feet (2 m) in length. Mating and calving take place throughout the year; the calving interval is believed to be about every 2 – 3 years, but in stressed populations mating takes place at an earlier age and calving at shorter intervals, a response to the enormous mor¬talities suffered from being entangled in nets by the tuna fishery. Gestation is 11 1/2 months and calves are nursed for 11 months. This interval is also longer for male infants, as mothers tend to spend more time caring for the boys. Female calves separate from their mothers earlier and spend a year babysitting the calves of other mothers before becoming mothers themselves.

DISTRIBUTION AND MIGRATION: Atlantic Spotted dolphins are generally found in groups of fewer than 50 individuals but have populations comprising hundreds of animals. These animals are highly social. Schools may contain both sexes and all ages. Some populations are found exclusively in deeper water, some populations prefer to frequent shallow waters, especially for behaviors associated with child care and pregnancy. Atlantic Spotted dolphins are sometimes seen together with bottlenose dolphins.

NATURAL HISTORY
Like all mammals, dolphins are warm blooded, breathe air, give birth to live babies, feed their new born milk, and are born with hair. Being warm, blooded, or homeothermic, dolphins maintain a constant body temperature regardless of the surrounding water temperature. Unlike terrestrial mammals, including humans, dolphins are conscious breathers, mean¬ing they must be aware of their breathing to avoid involuntarily taking a breath while underwater. Atlantic spotted dolphins are capable of diving to up to 60 meters, remaining underwater for up to 6 minutes. They are known to be preyed upon by sharks, but killer whales and other small-toothed whales may also be a threat.
The Atlantic spotted dolphin can often be seen traveling in small pods consisting of up to 15 dolphins. These dolphins enjoy maintaining a high level of social interaction with one another and can often be seen performing leaps and various acrobatic stunts. The Atlantic spotted dolphin communicates using vocal sounds and body language. When it comes to sound these dol¬phins use high-pitched clicks and whistles to communicate about nearby threats, food, a desire to play, and a number of other things. Each dolphin has its own unique frequency which helps them understand who is communicating, and also provides them with a geographic reference (location). This can be extremely useful when a mother for instances needs to keep track of one of her kids or when two friends are communicating with one another in a large pod. Body language is also important for commu¬nication. Dolphins may bump into one another or visualize their body language by spy hopping or leaping out of the water to alert other dolphins of various interests or threats or to display their physical abilities.

THREATS
Spotted dolphins are protected in U.S. waters by the Marine Mammal Protection Act. While the species is not considered endangered, they are, like all marine mammals, exposed to pollutants and biotoxins, and viral outbreaks. Studies of large, high mortality event over the last few decades suggest that the immune system of these animals can be severely affected by heavy metals, PCBs and other pollutants. Atlantic spotted dolphins are not listed as threatened or endangered under the En¬dangered Species Act, and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. No fishery- related mortality or serious injury has been observed during recent years; therefore, total fishery-related mor¬tality and serious injury can be considered insignificant and approaching the zero mortality and serious injury rate. There are insufficient data to determine the population trends for this species.


We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Bottlenose Dolphins – Basic Knowledge

The bottlenose dolphin is the most studied and best known of all cetaceans. This is primarily due to its ready adaptability to captive environment, such as research facilities and marine parks, and its appearance on the TV show Flipper. This dolphin has an extensive range and is the most encountered dolphin species in coastal U.S. waters.

PHYSICAL DESCRIPTION: The bottlenose dolphin has a long and robust body shape, with a pronounced, stubby beak (hence the name ‘bottlenose’), and a distinct melon. Because 5 of the seven neck vertebrae are not fused together as in other dolphin species, the neck of these dolphins is more flexible. They have about 40-48 sharp conical-shaped teeth in both the upper and lower jaw.

COLOR: The color of bottlenose dolphins may range from light to dark lead gray, with lighter shading on the sides, and a white, sometimes pink to pinkish-gray belly.

FINS AND FLUKES: The dorsal fin is triangular, curved and moderate in size, up to 35 cm in height, and located near the middle of the back. The flukes are proportional, curved, with a deep median notch, and are 65-80 cm from tip to tip. Their flippers are pointed and of moderate length.

LENGTH AND WEIGHT: Adult bottlenose dolphins can reach 4 meters (12 feet) in length, and, in some geographical areas, weigh as much as 650 kg (1,430 pounds). However, in most part of the world their weight seems to be limited to about 350 kg (770 pounds). Males are typically larger than females.

FEEDING: These dolphins can be found foraging in deep and very shallow waters. They may hunt and feed individually or in a concerted effort of a group, chasing fish against the water surface, onto mud banks, and shorelines. Association with human fisheries is also reported. They consume about 8-15kg (15-30 pounds) of food each day. Their diet includes a variety of fish species, but also squid and crustaceans.

MATING AND BREEDING: Male bottlenose dolphins reach sexual maturity at age 10, females between 5 and 10 years of age. The gestation period (pregnancy) is 12 months and calves are born in all seasons although in some geographical areas seasonal peaks during spring and fall have been reported. Females give birth once every 3-4 years. At birth, calves acre about 100 cm (3 feet) in length and may weigh around 10 kg (22 pounds). Calves depend on their mother’s milk for 12-18 months but stay with their mother for up to 5 years learning how to catch fish and the social skills to become a full member of dolphin society.

DISTRIBUTION AND MIGRATION: With the exception of polar waters, bottlenose dolphins are found in every ocean around the world, in coastal waters and the open sea. They are frequently encountered in estuaries, lagoons, bays and harbors. There appears to be a coastal and offshore ecotype. Population density appears to be higher in near-shore areas. Bottlenose dolphins are known to have limited home ranges or may be migratory.

NATURAL HISTORY: Like all mammals, dolphins are warm blooded, breathe air, give birth to live babies, feed their new born milk, and are born with hair. Being warm, blooded, or homeothermic, dolphins maintain a constant body temperature regardless of the surrounding water temperature. Unlike terrestrial mammals, including humans, dolphins are conscious breathers, meaning they must be aware of their breathing to avoid involuntarily taking a breath while underwater. Bottlenose dolphins can dive for as long as 20 minutes but typically hold their breath for only 30 seconds to 3 or 4 minutes between breaths.

Bottlenose dolphins may live for 50 years or more, with females generally living longer than males. They live in social communities, sometimes called pods. Group size in near-shore populations is typically 30 or less while offshore groups may comprise several hundred individuals.

Even though they appear to live in relatively open societies, they exhibit strong social bonds that help provide protection against predators, assist in locating and catching food, and aid in the rearing of their offspring. Like in other social animals, play is an important part of learning. Behaviors such as fish toss, bow riding and seaweed-keep-away are considered play but also help dolphins develop social bonds as well as useful hunting techniques. They use multiple feeding strategies, including “fish whacking,” where they strike a fish with their flukes and knock it out of the water, and driving schools of fish into shallow areas or onto mudflats. Bottlenose dolphins use high frequency echolocation to locate and capture prey, and high-pitched ‘whistles’ to communicate with one another.

THREATS: Bottlenose dolphins are protected in U.S. waters by the Marine Mammal Protection Act. While the species is not considered endangered, they are near depletion in some areas and threatened in many others. Incidental and direct exploitation are generally reported at moderate to low levels. According to NOAA, current threats come primarily from incidental injury and mortality from fishing gear (such as gill net, seine, trawl, and long-line commercial and recreational operations), exposure to pollutants and biotoxins, viral outbreaks and direct harvest in some countries (e.g. Japan and Taiwan). Studies of large, high mortality events over the last decades suggest that the immune system of these animals can be severely affected by heavy metals, PCBs and other pollutants.

In an effort to reduce injury and mortality of coastal bottlenose dolphins along the eastern seashore of the U.S., the National Marine Fisheries Service implemented the Bottlenose Dolphin Take Reduction Plan (BDTRP). This initiative includes provisions for research and education, and requires modifications of fishing practices for small, medium, and large-mesh gill-net fisheries from New York to Florida.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

The Face is Familiar, but …

 

 

The casual identification of individual cetaceans probably started when humans began interacting with coastal species over a century ago, when whalers and fishermen could identify a few individual killer whales by the shape and coloration of the dorsal fin. This technique, much refined, is still used today.

Scientists, studying cetaceans have long understood and appreciated the need to track individual whales or dolphins. Identifying individuals can help in the collection of information on group composition, site fidelity, movement patterns, population size, as well social structure. Given that dolphins and whales are extremely social animals, understanding the social structure of the population is vital to understanding cetaceans.

Most cetacean studies are conducted from the surface, where the dorsal fin is often the only visible part of the dolphin and therefore the only part usable as an identifier. Luckily, the trailing edge of the dorsal fin, which consists of a thin sheet of flesh and connective tissue, is the most identifying feature of most dolphins and porpoises. Small nicks or larger notches in this area of the dorsal fin are consistent markings that can be used to track individuals over time. However the shading, coloration and overall shape of the dorsal fin can also be helpful.

Some cetaceans have other areas that are more useful as identifiers. The humpback whale has unique markings on the bottom of its flukes, the right whale has large crusty growths on its upper lip that grow in unique patterns and are used to identify individuals and the spotted dolphins have spots; clusters and constellations of spots which are great individual markings and very helpful in the identification process. These dolphins, however, get more and more spots as they develop from infants to adults, identifying spot clusters get covered by new spots, and so it is important to continuously track them over time. All of these identifiers are, in most cases, very subtle, and hard to track in the field. This is where capturing images with photo or video cameras becomes important.

In nearly all studies of cetaceans that track individuals, photo-identification techniques are used to some degree. Most researchers depend on their cameras and photo files a great deal. To get a usable id photo from the surface, it is important to get the dorsal fin on film from a 90-degree angle. This eliminates distortion from angle and helps prevent misidentifications. Any time, we can observe dolphins from underwater, we can use the entire body of the dolphin for identification purposes, which can be very useful, especially in the case of spotted dolphins where we use the spotting pattern across the entire body to identify individual dolphins.

As any field researcher will tell you, it takes a great number of photos to get usable shots. But then, experience does matter and now that we use digital photography, having to throw away bad shots does not hurt as much as it did when we used film.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

In the Eyes of the Dolphin

Cetaceans have extraordinary eyesight.

Dolphins can use their sonar to detect complex shapes and identify them visually. Captive animals have been known to throw frisbees and catch fish without using their sonar. And at any oceanarium it is common to witness dolphins demonstrating their amazing ability to leap out of the water and touch a small target many feet above the surface. These same dolphins repeatedly sail over tightropes and through hoops without touching them, often times in unison. All demonstrating that cetaceans are capable of seeing, not only underwater, but also in air and from water to air. The combination of their visual acuity and sonar abilities makes dolphins well equipped to evaluate any and all objects in their environment.

When the ancestors of the modern dolphin re-entered the water, so many eons ago, their eyes and eyesight went through some major transformations.

On land, eyesight is primarily challenged by dust and the threat of physical harm. These problems are counteracted by hairy eyebrows and lashes and eyeballs that are located in deep sockets of the skull for protection. Tears help wash away dust and clean the eyes. In the sea, the challenges to the eye are more associated with salt and particles in the water, as well as the massive pressure associated with deep dives. Cetacean eyes are encapsulated to protect the shape and integrity of the orb from pressure during dives. There are no dolphin tears, instead special glands secrete oil that continuously wash the surface of the eye to prevent irritation from salinity.

Land animals depend on detection of movement, position, color, detail and sharpness as visual cues. Dolphin vision is more dependent on brightness. The cetacean eye is adapted to perform at depths where light is minimal. At thirty feet, as much as 90% of sunlight is lost and color disappears. The dolphin pupil is capable of opening enormously wide to enhance brightness. The eyes are also lined with a highly reflective substance that concentrates light, similar to the silver of an old traditional headlight. The eyeball has an oval shape, and the lens is positioned to prevent even the weakest ray of light from escaping the retina.

On the other hand, dolphins must see not only at lightless depths, but also at or just below the surface, where it is the brightest. Due to water movement and its effect on sunlight, it can be more than seven times brighter just below the surface than it is above the water. The eye is equipped with a flap like structure that closes over the restricted pupil. It can look as if the dolphin has two tiny pupils at times. Even so, the ability of the dolphin to go from near complete darkness to extreme brightness is one of the miracles of the dolphin eye.

The position of the dolphin eye on each side of the head not only provides additional protection from the onslaught of ocean particles as the dolphin swims forward through the water, but also allows for a nearly complete field of vision. This position of the eye provides some stereo vision directly below them, but also creates a blind spot directly in front of the dolphin. This is one of the places where the sonar comes in handy as they can virtually “see” anything in this blind spot… with sound.

Dolphins don’t just use their eyesight to locate food. The structure of dolphin societies suggests a strong use of visual cues in communication. It makes perfect sense that in an environment where danger can come from any and all directions, silent communication is important. Body posture and subtle swimming techniques can effectively give the others a warning. They can also express irritation, initiate romance and/or provide comfort. An S-shaped body posture by an individual is thought to represent some degree of annoyance, an inverted swim under a female by a male suggests courtship, and companions often swim side by side, eye to eye and rub pectoral fins, possibly during new or unique situations.

Since the dolphin body has adapted to be optimum in the aquatic world, they have lost the ability for facial expression common in terrestrial mammals. They cannot smile with satisfaction, nor grimace in pain. Therefore there must be a lot to be seen in the eye of the dolphin. As many of us here at the Palm Beach Dolphin Project can attest, dolphins are not only capable but sometimes insistent on making eye contact. Not only with each other but with us as well. Here’s looking at you kid!

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Florida’s Wild Dolphins Reveal Unique Social Feeding Behavior

For the last decade, the Taras Oceanographic Foundation, under a general authority of the National Marine Fisheries Service, has been conducting dolphin surveys in Palm Beach County. We position or boat within three miles from shore, and travel at slow speed, until we see dolphins. We will then follow the dolphins long enough to photograph each dolphin and document their behavior. And although we have studied wild dolphins for decades, we still find new and different behaviors that are remarkable.

There are days when bait fish seem to fall fro m the sky. On those special days, when the seas are flat, we watch all kin ds of fish jumping out of the water; some high in the air in a single arc, others low and repeatedly as they travel some distance. Flying fish routinely glide, with ease, for several meters. Ballyhoo and Bonita will jump to avoid being eaten. Every once in a while, a clever dolphin will take advantage of these jumping fish; a clever dolphin like Odyssey, and her offspring.
Odyssey was conducting a master class in the art of catching fish. And when I say ‘catching fish’ I mean CATCHING fish. She was throwing a fish into the air, and artfully catching with in her mouth. She demonstrated the process a few times for her calf, and then did something remarkable.

She bit off the head of the fish, before throwing the body in the air, for her calf to catch. We could not help but make the comparison of a mother cutting the crust off a sandwich, before serving it to her child. But it is more than that; she was keeping her calf safe.
For the significance of this simple act, we need to first ex­ amine the basic anatomy of a fish. Fish use gills to acquire oxygen from the water. These gills are located just at the base of the head. When a fish breathes, it draws in a mouthful of water and pulls the sides of its throat together, forcing the water through the gill openings, which expand away from the body.

Dolphins do not chew their food. It is imperative, therefore, for a dolphin to swallow their prey, head first. If a fish were eaten tail first, it might expand its gills while passing through the throat of the dolphin and become wedged. In all the necropsies I performed, I once found one dolphin with a fish caught in its throat. The fish was swallow ed tail first, and the res ult was deadly. Back to Odyssey and her calf.
She was biting the heads off the fish, so her calf would not catch the fish backwards and choke to death. She threw the fish body high in the air, and her calf made repeated attempts to make the catch. More likely motivated by the game than the food, the small dolphin was still nursing and probably not too hungry. Over the next few months, as this calf grows, Odyssey will insist it hunt down its own food. The catching strategies learned now, will be all the more important in the future.

But even the best strategies and the most prepared youngster will not grow to be an adult unless there continues to be the abundance and variety of fish to eat. We are currently living through the sixth mass extinction event this planet has experienced. ln the past, these epic occurrences were the result of volcanic eruptions or asteroids striking the earth, but this time they are our own doing.

Why is it important to study dolphins? Sure they are cute and all, but why should anyone support such endeavors? Because in many ways, we are alike. Dolphins eat the fish we eat. They raise their kids to be better citizens and work every day to make a living and support their families. They are the masters of the ocean environment; a subject about which we are remarkably naive. And the ocean is vital to the survival of us both.

Although we continue to harvest the resources the oceans provide, at unsustainable rates, we could learn from the marine mammals how to find areas of highest productivity and hunt selectively. As we increase the noise in the ocean with our recreational watercraft, commercial ships and military exercises, we learn from the dolphins that in the deep ocean, it is by listening and hearing we can have the best vision. Marine mammals are the ocean canaries, warning us about the disastrous effects of pollution and habitat destruction, and they can be our guides to find answers, to questions we have not yet thought to ask about the ocean realm.

It is through the long- term studies like the one we have been carrying out in Palm Beach waters, that dolphins teach us about the ocean, the world and ourselves. We just have to keep going to school.

 

***
We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world. Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective. The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Why Oceans Are Important To Us

In his charming and insightful book called ‘The Immense Journey’, biologist-author Loren Eiseley said:

“We have many ways to quench our thirst, but no way to overcome our need for water…its substance reaches everywhere; it touches the past and prepares the future; it moves under the poles and wanders thinly in the heights of the air…If there is magic on the planet, it is contained in water.”

There are about 326 million cubic miles (=525 cubic kilometers) of water on this planet. The largest percentage, 97.4% is found in the oceans.  2.6% is on land and most of this is locked in the great polar ice caps. All the life-sustainable fresh water found in the worlds lakes, creeks, streams, and rivers and in the groundwater or aquifers, represents less than 0.01 percent of the total. Water is virtually and intrinsically important!

The world’s oceans cover 71% of the Earth’s surface. Life probably originated in the seas, and life still depends largely on their well-functioning. Most of the solar heat that hits this planet is stored there, most of the conversion of sunlight to food energy by plants takes place in water, most of the world’s fresh supplies of oxygen are produced by microscopic plant-like organisms floating near the surface of the oceans, the global climate is regulated, and a lot of our food protein comes from the sea. The Ocean is also one of the most important traffic routes and a sink for a large portion of our wastes. It provides natural resources and, to an increasing extent, raw materials for the pharmaceutical industry.

In addition to these primarily material aspects, the ocean has acquired significant value as a recreational area. More and more people seek recreation and relaxation in, or near the water. Marine tourism is one of the most rapidly growing branches of industry.  Proximity to the sea has great value, reflected in incredibly high real estate prices for seashore property. Roughly 70% of the world population lives within 200 km of the coast, and two third of all metropolises, having a population of more than 2.5 million, are situated on the coast. Between 100 and 200 million people live in coastal zones below storm tidal level.  Ignoring these fragile and vital eco-systems can only spell disaster.

From the earliest days of human settlements, up to the industrial revolution, waterways have been a major means of transport. Cities and industrial plants, even after the industrial revolution, have been located on these waterways, because many of them require water for manufacturing and/or shipping to coastal ports. With very few exceptions, all streams and rivers flow into other rivers or into lakes, which, in turn, have outlets to wetlands, bays, estuaries, seas and oceans.

The aggregation of wastes flowing into our streams and estuaries, and ultimately into the oceans, is a biochemical soup carrying thousands of different chemicals. Rainwater and snow melt, that run off from congested urban areas, collect street oil and chemicals as well as many metals. Runoff into streams and rivers adjacent to farmlands carry tons of suspended particles of soil. This is not only damaging to fish but can also choke-out submerged oxygen-giving grasses in coastal woodlands, bays or estuaries. Runoff from timber harvesting activities, especially clear cutting, deprives the exposed land of thousands of tons of soil and has caused the pollution of some of the most valuable spawning grounds for trout and salmon in the Pacific Northwest.

Runoff of the nitrogen and phosphorus components of fertilizers leads to an oxygen depletion in the water. This depletion has caused massive fish die-offs and can wipe out whole areas of marine habitat necessary to maintain the life cycles of myriads of species of aquatic life. Other chemicals, such as DDT can accumulate in the tissues of marine animals to toxic levels, even if they live their entire lives in remote parts of the globe (Antarctic penguins and seal species for example).

The incredibly rapid petrochemical revolution, which forms the basis for this modern age of plastic, has spawned a nearly exponential increase in major sources of pollution affecting our stratosphere, atmosphere, lands and waters. We build this material to last and now, after years of dumping it into the sea, it has come back to haunt us, killing and maiming marine life. Plastic is believed to be the most far-reaching man-made threat facing many marine species, annually killing or maiming tens of thousands of seabirds, seals, sea lions and sea otters, as well as hundreds of whales, dolphins, porpoises and turtles.

We know that the deadly flows we are adding to our oceans do not just disappear.  Many of them do not even decay. In all, this mixture can kill plant and marine life, contaminate food supplies and endanger people and entire coastal communities. With over 50% of the US population now living within 100 miles of our coastlines, it is no accident that the highest chemical contamination can be found in waters of the largest of the cities on these coasts – Boston, New York, New Orleans, Los Angeles, San Francisco and Seattle.

What long-term effects and future afflictions are in store for our “water planet” is beyond our present knowledge, but there is doubt that global environmental changes will have serious effects on the oceans will pose great problems for many countries, and the very existence of some island states may even be threatened. Given the different functions oceans and coastal areas have for human society, conflicts between different interests, such as utilization and protection, will arise.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Dolphins as Sentinels for Oceans and Human Health

Over the past 50 years, a great number of previously un-known human diseases emerged, while other well-known maladies, including cholera and tuberculosis, have seen a significant resurgence. Not surprisingly, dolphins and other marine mammals experience a similar trend, with various papillomaviruses, dolphin poxvirus, lobomycosis, various neoplastic diseases, and algal bloom bio-intoxication being among the better-understood disease agents or diseases. Our experience in human medicine should cause all of us to be concerned about the deterioration of aquatic eco-systems, coastal freshwater or marine, especially since they support more than half of the population in the U.S. alone.

Monitoring the overall health status of dolphins provides an excellent avenue to evaluate the wellbeing of entire aquatic systems, and identify possible environmental trends. Dolphins are the ocean canaries, warning us about existing and emerging threats not only to the aquatic eco-systems, but also to human health. But dolphins are also charismatic and instill the desire to be part of a solution in many people who otherwise may not care. No doubt, it is in our own best interest to closely observe any patterns that could affect us.

Let’s focus here on the most talked about water-related issue in the past two months in south Florida has been the catastrophic, harmful algae bloom that descended onto the Port St. Lucie River lagoon and associated waterways all the ay to the coastline. Algae blooms have become a regular occurrence in this area for years, but this year’s outbreak was larger by order of several magnitudes.

While some people may think that such algae blooms represent little, if any dangers, it is well established that such blooms produce neurotoxins that can kill dolphins and other marine life, as well as biotoxins that affect human health. Among those threats to our own wellbeing are brevetoxins and saxitoxins that cause poisoning, and okadaic acid, which causes diarrhea.

Some recent disease outbreaks (epizootics) among bottlenose dolphin populations in southeast Florida serve as prime examples of how studying dolphins can help us manage health risks. Several of these outbreaks were associated with brevetoxins, produced by a dinoflagellate called Karenia brevis. That is the same species causing the so-called red tides. Brevetoxins are known to kill and/or contaminate fish and shellfish. Once we consume those, or simply inhale toxic aerosols, we will fall ill. It is noteworthy to emphasize that the actual exposure may be delayed, meaning that the risk to human health continues long after, or far away, from the original dinoflagellate bloom.

In sum, any increase in toxins, whether due to natural or anthropogenic cause, in our coastal habitats must be of great concern to us. While we may not yet fully understand how these toxins are absorbed and travel through the entire food chain, there is no doubt that dolphins can serve as the sentinels for ocean and human health.

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Sustainable Coastal Development

Coastlines are where the sea meets land. While they always played an important role in human history, they have increasingly become one of the most desirable living places on the planet. People chose to live near the water for various reasons: a fairly moderate climate influenced by coastal winds, and year-round access to leisure, fishing, and ports for navigation and transportation of goods. For many, the deciding factor evolves around the lifestyle coastal environments provide. In recent decades, affluent urbanites and retirees have begun to move to small existing coastal towns or newly created communities in their search for beautiful, natural surroundings. Recent research, suggesting that people who live closer to the coast are in better health, has only strengthened its appeal.

Sustainability and resilience are becoming increasingly relevant in coastal development. While the concept of sustainability has been around since the 1990s, resilience is a relatively new concept: it represents a holistic, anticipatory and proactive approach that values adaptability to change.

Change is constant and inevitable, and we are witnessing the beginnings of some dramatic changes related to temperature and sea level rise. In fact, we can observe the effects already, including an increase in daily temperatures, change in rainfall patterns and extreme weather events, sea level rise, increase in sea surface temperature, changes in hydrology, and loss of biodiversity. The associated impacts will be felt sooner than originally anticipated and will affect the return on the investments made in the coming years. Sea-level rise threatens low-lying shores, especially those in storm paths, but even rugged coasts may experience significant changes in weather patterns. Resulting economic costs and damages to resorts, airports, local tourism, etc. in the Caribbean alone are estimated to exceed 20 billion dollars (US) per year. By contrast, proactive adaptation is far less expensive, with $1 in adaptation preventing $4 in economic losses.

Adaptation means to create coastal built environments that can withstand higher seas and stronger storm surges through sensible choices in terms of siting, setbacks and elevations. With regard to infrastructure such as energy, water, and wastewater treatment, it appears advantageous to employ more decentralized, smaller and flexible systems that can be repeatedly adapted over time to the changing physical conditions of coastal environments. Research and education are useful tools to develop adaption measures related to land use, changes in hydrology, exposure to tropical vector diseases, seal level rise, extreme weather events, biodiversity and ecosystems (just to name a few) that will result in sustainable and resilient costal developments.

The development of coastal areas will continue to be a desirable undertaking simply by virtue of location, but it is imperative for the future of the planet and our own sake as people to create coastal environments that are resilient, sustainable and economically viable.

And remember:

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Without Music, Life would be a Mistake

These words of the German philosopher Friedrich Nietzsche, uttered more than 100 years ago, expressed an intuitive understanding of the importance of music for the human existence. While many people may have had a general sense of this to be true, it has been only in recent years that researchers have been able to provide evidence as to the power and influence of music.

Magnetic Resonance Imaging (MRI) revealed that music it is the only human activity that involves each and every region of our brains. Listening to music, in a nutshell, can make you smarter, but play an instrument and you are on your way to being remarkable. No doubt, music enriches people’s lives on the molecular, intellectual, and emotional levels.

Music training and learning an instrument can significantly improve our motor and reasoning skills. Music also helps us exercise. More than 90 years ago, American researcher Leonard Ayres found that cyclists pedaled faster when listening to music than without it. The reason being, music can override the signals of fatigue our body is sending to our brain and so instead of stopping exercising, we continue on. Not only can we push through the pain to exercise longer and harder when we listen to music, but it can actually help us to use our energy more efficiently. Some studies have shown that cyclists who listened to music required 7% less oxygen to do the same work as those who cycled in silence. It is interesting to note that this is mostly beneficial for low- and moderate-intensity exercise. The same is true for ambient noise, which at moderate levels, has shown to promote abstract processing, leading to higher creativity.

But maybe you just like to listen to music and give in to the emotions that come with it.  But be aware that the music we listen to influence how we perceive the world around us. For instance, the way we interpret a neutral expression as happy or sad, matches the tone of the music we just heard. And being able to distinguish between perceived emotions and felt emotions, i.e. allowing us to understand the emotions of a piece of music without actually feeling them, is the reason why we can enjoy listening to sad music, rather than feeling depressed.

No doubt music is not only enjoyable, it is also good for you. It is part of humanity and represents some of the greatest accomplishments of our species. Without it, life would indeed be a mistake.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

The Waste Crisis

According to the EPA, Americans generated about 254 million tons of trash, of which 87 million tons, or about 34%, was recycled and composted. Waste generation has increased to about 4.4 pounds a day per person with 1.5 pounds being composted or recycled. Most of that waste ends up in a landfill, in essence a relatively inexpensive, earth moving operation. The downside of using landfills is that they remove valuable lands from other uses for generations to come, and because decomposition generates explosive methane gas, and waste settles over time, it is impossible to build any structure over landfills once they are closed. The situation is exacerbated since most landfills are located close to urban centers where development pressure is greatest.

But let’s have a look what happens inside a landfill. As it turns out, the waste is not as dormant as it may appear, but has a life of its own instead. Deep inside microbes are feeding on organic materials and produce chemical changes. Settlement takes place as the lower parts of the landfill are compressed by the weight above.

Infiltrating rainwater leaches heavy metals, PCBs, lead, solvents, dioxin, DDT, benzene, CFCs, furans from the myriad of products and substances dumped in the landfill, forming a contaminated liquid that sooner or later percolates downward and – unless we install some barriers – pollutes the underlying ground water. Today, around 45,000 different chemicals are produced and about 1,000 new ones are added each year.  Unfortunately, many of these substances are toxic and can damage parts of the complex and fragile environmental web. And equally disconcerting, many of chemicals find their way into our landfills. Even modern landfills with liners and leachate collection systems are a problem.  If they are not leaking now, they will probably start leaking within a few decades of their closure.  The use of modern technology simply postpones the inevitable.

In addition to the leachate, landfills also cause atmospheric pollution. The decomposition processes release gases such as methane, carbon, dioxide, vinyl chloride and hydrogen sulphide, which slowly seep into the air around the landfill. This impairs air quality in the immediate vicinity and, on a larger scale, contributes to greenhouse effect and global warming.

The production of consumer goods and their distribution to the customer make full use of the latest technological development, while the disposal of the remains is still carried out on stone-age-level. Landfills do not only represent an unproductive land use but also fail to meet the sustainability principle.

In the production and consumption of the myriad of products few seem to care what happens at the end of their utility range. Never before and by no previous society have comparable large amounts of products and such dangerous substances been converted in such a short time into waste. In order to avoid a total waste crisis, the engineering in production must be complemented by an efficient and non-polluting waste management, which aims to minimize waste at the source, in the production process, and transforms the inevitable remaining wastes into relatively harmless substances that can be safely absorbed in soil, water and air.

When considering the costs, decision makers more often than not, focus on the short-term cost of landfills when compared to incineration or waste-to-energy conversion plants. What is frequently omitted is the fact that landfills are effectively permanent facilities, which, unlike incineration or conversion plants, can not be easily after 30-50 years to make room for more advanced technologies or entirely different uses. In fact, while the land used for an incinerator/conversion plant could be sold and used for other purposes, landfills will need to be monitored and maintained for centuries after they close.

The most crucial factor is however, that the costs of damage to the environment, the value of Earth’s natural ecosystems and the services they provide are not fully captured in commercial markets in the way economic services and manufactured commodities are valued. To properly reflect the value of Earth’s ecosystems, additional cost factors should be included in the financial analysis of waste management facilities. For example, landfill costs should be increased to account for the permanent loss of land resources, the exposure of groundwater to leachate, and the atmospheric pollution caused by gas emissions.

Many of the processes and technologies needed to create a circular economy are available today or within reach. What’s lacking is our resolve and determination to change course.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Scientia potentia est. Knowledge is power.

Today we face an increasing chorus of anti-science voices rampant in politics, schools, the doctor’s office and the public. It seems an increasing number of people don’t appreciate science’s relevance; they think it’s a bad word, that it ruins things, that it’s for someone else to do. Many never met a scientist.

For us scientists, our research pursuits are incredibly important. We don’t consider it a job, it’s our life, and we invest everything into it. We are passionate, purposeful and relentless in the pursuit of our objectives. We like questions. We like answers. We like knowledge. We like to understand.

But science permeates your lives, too. It is much more than an intellectual exercise because it leads to a deeper understanding of the world and its basic mechanisms, and function. Science also teaches us to care about the world. Generally, understanding begets caring.

Most of science consists of answering very small questions.  Each one may not have much value in and of itself, but when the whole picture is to be seen, the importance of each of those small pixels of knowledge quickly become evident. Research aimed only at solving a specific, well-understood short-term problem is not going to provide us with the answers we need ten or twenty years from now. We need to commit some fraction of our resources, our dollars, to basic science, understanding that it is a risk taking investment; not all science hunches pay off, but when they pay off they pay off big.

Seems straightforward, and yet many believe their lives are not touched by science at all.  Perhaps herein lies the fundamental challenge: how to get people enthused about a subject if they don’t see any value or connection to themselves.

Take solid waste for example. Most people do not spend a second thought on what happens to all the stuff they throw away and yet science is once again standing ready to figure out how to best deal with its generation, prevention, characterization, monitoring, treatment, handling, reuse and ultimate residual disposition.

By linking worldwide data on solid waste, population density, and economic status, scientists figured out that of the 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, 4.8 to 12.7 million metric tons entering the ocean. Without waste management infrastructure improvements, the cumulative quantity of plastic waste entering the ocean is predicted to increase by an order of magnitude by 2025.

Science has already played a major role in reducing waste, recycle precious raw materials, develop waste to energy conversions, and use bioremediation to prevent toxic substances from entering natural cycles.

Or take sea level rise, which is likely to cause mass migrations that will affect not just the United States’ East Coast, but reshape communities deep in the heart of the country, according to research published in the journal Nature Climate Change. People leaving heavily populated coastal communities inundated by flooding will relocate across the U.S. by 2100, including to landlocked states such as Arizona and Wyoming that are unprepared to accommodate this wave of coastal migrants. We do not exactly know what is going to happen but the important point is that only through research will we find out and can then develop tools and strategies to accommodate all those people who will be displaced from their homes due to sea level rise.

Modern science not only builds spaceships and manipulates atoms, but it also helps people to live and work in a more satisfying and healthy manner. It is not only present when a doctor prescribes a new medicine, but also when you eat potato chips, use a cell phone, or when you asked to wear a mask to help limit there spread of the corona virus.

Science is both fascinating and mysterious. Science is for everyone, everybody uses science, and everyone needs science! It is our collective responsibility to illustrate the very large role scientific research plays in the daily life of every person!

So let’s stand up for Science together. March for Science. Support Science. Scientia potentia est. Knowledge is power. Always.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more