Donate

Oceans

Common Dolphins – Basic Knowledge

PHYSICAL DESCRIPTION: Common dolphins are colorful, with a complex crisscross or hourglass color pattern on the side; the long-beaked common dolphin being more muted in color. When looking at the profile of the two common dolphin species, the short-beaked common dolphin has a more rounded melon that meets the beak at a sharp angle, as compared to the long-beaked common dolphin that has a flatter melon that meets the beak at a more gradual angle.

COLOR: Color patterns on the common dolphin are the most elaborate of any cetacean. The back is dark gray-to-black from the top of the head to the tail dipping to a V on the sides below the dorsal fin. The flanks are light gray behind the dorsal fin and yellowish-tan forward of the dorsal fin, forming an hourglass pattern. Its belly is white. There are large dark circles around the eyes connected by a dark line that runs across the head behind the beak and a black stripe runs from the jaw to the flippers.

FINS AND FLUKES: The dorsal fin is triangular-to-falcate (curved). It is pointed and located near the middle of the back and is black-to-light gray in color with a black border. The flippers are long and thin and slightly curved or pointed depending on geographical location. Flukes are thin and pointed at the tips with a slight notch in the center.

LENGTH AND WEIGHT: Common dolphins can reach lengths of 7.5 to 8.5 feet (2.3-2.6 m) and weigh as much as 297 lb. (135 kg). The short-beaked common dolphin is relatively heavier, and has a larger dorsal fin and flippers than the long-beaked one.

FEEDING: Delphinus delphis feeds on squid and small schooling fish. In some parts of the world, they feed at night on the deep scattering layer, which moves towards the water’s surface during that time. Common dolphins have been seen working together to herd fish into tight balls. Like many other dolphin species, the common dolphin will sometimes take advantage of human fishing activities (such as trawling), feeding on fish escaping from the nets or discarded by the fishermen.

MATING AND BREEDING: Sexual maturity is reached at 3 to 4 years of age or when they reach 6 to 7 feet in length (1.8 to 2.1 m). Calves are 30 to 34 inches at birth (76 to 86 cm ); gestation period is 10 to 11 months.

DISTRIBUTION AND MIGRATION: The common dolphin may be one of the most widely distributed species of cetaceans, as it is found world-wide in temperate, tropical, and subtropical seas. The long-beaked common dolphin is found more in coastal waters; the short-beaked common dolphin is found in offshore waters, including the Eastern Atlantic Ocean as far south as Florida. The common dolphin throughout history has often been recorded in art and literature. It was recently proposed that two forms of this species, the short- beaked (delphis) and long-beaked (capensis) common dolphin, represent two distinct species.

NATURAL HISTORY: Like all mammals, dolphins are warm blooded, breathe air, give birth to live babies, feed their new born milk, and are born with hair. Being warm, blooded, or homeothermic, dolphins maintain a constant body temperature regardless of the surrounding water temperature. Unlike terrestrial mammals, including humans, dolphins are conscious breathers, meaning they must be aware of their breathing to avoid involuntarily taking a breath while underwater. Common dolphins can dive for as long as 15-20 minutes but typically hold their breath for only a few minutes. Common dolphins may live for 35 years or more, with females generally living longer than males. Common dolphins are often found in large herds of hundreds or even thousands. They are extremely active, fast moving, and engage in spectacular aerial behavior. They are noted for stampeding in these extremely large groups across the ocean, riding bow and stern waves of boats, often changing course to bow ride the pressure waves of fast-moving vessels and even large whales. Common dolphins can be frequently seen in association with other marine mammal species.

THREATS: Traditionally, hundreds of thousands of common dolphins have been taken incidentally, along with spinner and pan-tropical spotted dolphins, in purse seine nets used during tuna fishing operations in the eastern tropical Pacific although these numbers have improved. Common dolphins also may be caught accidentally in other fishing gear, such as midwater trawls. Turkish and Russian fishermen used to catch large numbers of common dolphins in the Black Sea for meat (to be used for fish meal) and oil. The fishery stopped after the common dolphin numbers became and remain severely depleted; there are several reports suggesting that the Turkish fishery may have recently resumed. Many common dolphins are taken in a Japanese small cetacean fishery and directly caught in the Mediterranean. Some common dolphins have been taken in Peru for human consumption. Studies suggest that the immune system of these animals can be severely affected by heavy metals, PCBs and other pollutants. The status of common dolphins, relative to OSP, in the U.S. Atlantic Eastern Economic Zone (EEZ) is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Atlantic Spotted Dolphins -Basic Knowledge

The Atlantic spotted dolphin is considered playful and acrobatic. They love to ride the bow wave of boats and surf the wake of ships they encounter. They are also more likely to approach humans than other dolphin species and become easily habituated to human activity in the wild, but do not survive in captivity.

PHYSICAL DESCRIPTION
Spotted dolphins are difficult to describe because their size and coloring vary according to their geographic location. Found only in tropical waters, and subtropical waters, there are two recognized species: the Atlantic spe¬cies, Stenella frontalis, and the worldwide species, the pan-tropical spotted dolphin, Stella attenuata. Their long slim beak con¬tains 35 to 48 small conical teeth in each side of the upper jaw and 34 to 47 small, conical teeth in each side of the lower jaw.

COLOR
Spotted dolphins change their coloration as they mature. Newborn calves are dark gray with a white belly (two-tones). As the animal grows older, dark spots begin to appear. First dark spots appear on the lower part of the body (speckled). When sexually mature, light spots begin to appear on the dark upper portion of the body (mottled). Eventually, the spots merge into almost solid color patterns (fused). This color pattern process is a visual indicator of the age of the dolphin.

FINS AND FLUKES
The dorsal (top) fin is tall and curved; the flippers are small and pointed. The flukes are small and pointed at the tips with a small median notch.

LENGTH AND WEIGHT
Length averages about 7 feet (2.1 m); weight averages 220 pounds (100 kg). Calves are 32 to 36 inches (80 to 90 cm) at birth.

FEEDING
Spotted dolphins feed on many varieties of fish and squid found in various water depths. They also feed on small fish and eels found buried in the sand in shallow waters.

MATING AND BREEDING
This species reaches maturity between 6 and 8 years of age or when the animal is about 6.5 feet (2 m) in length. Mating and calving take place throughout the year; the calving interval is believed to be about every 2 – 3 years, but in stressed populations mating takes place at an earlier age and calving at shorter intervals, a response to the enormous mor¬talities suffered from being entangled in nets by the tuna fishery. Gestation is 11 1/2 months and calves are nursed for 11 months. This interval is also longer for male infants, as mothers tend to spend more time caring for the boys. Female calves separate from their mothers earlier and spend a year babysitting the calves of other mothers before becoming mothers themselves.

DISTRIBUTION AND MIGRATION: Atlantic Spotted dolphins are generally found in groups of fewer than 50 individuals but have populations comprising hundreds of animals. These animals are highly social. Schools may contain both sexes and all ages. Some populations are found exclusively in deeper water, some populations prefer to frequent shallow waters, especially for behaviors associated with child care and pregnancy. Atlantic Spotted dolphins are sometimes seen together with bottlenose dolphins.

NATURAL HISTORY
Like all mammals, dolphins are warm blooded, breathe air, give birth to live babies, feed their new born milk, and are born with hair. Being warm, blooded, or homeothermic, dolphins maintain a constant body temperature regardless of the surrounding water temperature. Unlike terrestrial mammals, including humans, dolphins are conscious breathers, mean¬ing they must be aware of their breathing to avoid involuntarily taking a breath while underwater. Atlantic spotted dolphins are capable of diving to up to 60 meters, remaining underwater for up to 6 minutes. They are known to be preyed upon by sharks, but killer whales and other small-toothed whales may also be a threat.
The Atlantic spotted dolphin can often be seen traveling in small pods consisting of up to 15 dolphins. These dolphins enjoy maintaining a high level of social interaction with one another and can often be seen performing leaps and various acrobatic stunts. The Atlantic spotted dolphin communicates using vocal sounds and body language. When it comes to sound these dol¬phins use high-pitched clicks and whistles to communicate about nearby threats, food, a desire to play, and a number of other things. Each dolphin has its own unique frequency which helps them understand who is communicating, and also provides them with a geographic reference (location). This can be extremely useful when a mother for instances needs to keep track of one of her kids or when two friends are communicating with one another in a large pod. Body language is also important for commu¬nication. Dolphins may bump into one another or visualize their body language by spy hopping or leaping out of the water to alert other dolphins of various interests or threats or to display their physical abilities.

THREATS
Spotted dolphins are protected in U.S. waters by the Marine Mammal Protection Act. While the species is not considered endangered, they are, like all marine mammals, exposed to pollutants and biotoxins, and viral outbreaks. Studies of large, high mortality event over the last few decades suggest that the immune system of these animals can be severely affected by heavy metals, PCBs and other pollutants. Atlantic spotted dolphins are not listed as threatened or endangered under the En¬dangered Species Act, and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. No fishery- related mortality or serious injury has been observed during recent years; therefore, total fishery-related mor¬tality and serious injury can be considered insignificant and approaching the zero mortality and serious injury rate. There are insufficient data to determine the population trends for this species.


We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Coral Cartography Advances Conservation

Considered among the most complex and diverse environments on Earth, coral reefs play a key role in the health of our planet’s oceans. Pollutants, algae blooms, over-fishing, damage due to development and mooring are well known threats to their own health and recent changes in the global climate are causing additional stresses, including a rise in water temperature and acidity. The result is a further decimation of the existing reefs and the creatures that underpin the ocean’s food web.

Most of our knowledge about coral reefs and benthic habitats is based on monitoring data gathered through a range of methods, mostly reef surveys, varying from rapid monitoring by trained volunteers to highly detailed, species level observations. However, these surveys provide little, if any, information on adjacent benthic habitats, such as sea grass beds or hard bottom, and more importantly, fail to appropriately address and document the spatial component of the marine ecosystem. While coral reef mapping in itself is not new, most of these maps may differentiate shallow from mixed reef areas, but they do not provide further detail, nor do they include adjacent areas of sea grass beds or other benthic habitats.

Caring for coral reefs, however, is dependent on us knowing far more about these extraordinary benthic environments and the associated ecosystems they host, and the establishment of baseline data against which future assessments of ocean health can be measured.

To generate maps of coral reefs, we have used aerial and satellite imagery, remote sensing and ArcGIS, and on-site field-surveys combined with the marine habitat classification framework defined by the Ecological Society of America (ESA) and the National Oceanography and Atmospheric Administration (NOAA) Office of Habitat Conservation, which provides for the distinction of community types and density variations therein.

The image shows a highly precise map of the marine area surrounding Peterson Cay that discerns different habitat types from bare ocean floor to algae, sea grass, and coral reef, highlights density variations in each, and pinpoints the exact location of individual species of interest such as the endangered Elkhorn coral.

The ArcView software allows us to determine with impressive precision the spatial expansion of each marine habitat across the study site. As it turns out, coral reef, in its various expressions of density covers 208 acres, sandy bottom with various degrees of sea grass spread out over 263 acres, and areas of hard pad, with algae (generally red and brown algae) of one degree or another covered 209 acres. It is worth emphasizing though that the density of algae coverage in two-third of these areas is less than 10%.

Being able to accurately locate individual corals or territorial fish species is essential for successful management and conservation programs. For instance, observations of the invasive Indo-Pacific lionfish (Pterois volitans), which poses a significant risk to native species, can be charted on the map facilitating its capture and eradication. Having a visual representation of the entire reef, or a number of reefs stretched out across a larger area, is the best means in determining where to install fixed monitoring devices, such as sedimentation traps. The comprehensive understanding of spatial features across the reef will also facilitate the identification of additional dive sites suitable for commercial scuba operators. Increasing the number of dive sites will alleviate the pressure of those currently used every day by multiple groups. Marking mooring sites adjacent to shallow reefs will help avoid reef damage caused by boat traffic and anchors. Last but not least, knowing the exact location, dimension and composition of the reefs will help develop sustainable land use plans for coastal projects that benefit from these natural jewels rather than harming or destroying them.

By documenting the actual environmental conditions, we are able understand the relationship between different habitat types and the larger reef ecosystem as well as monitor expansions or declines of certain habitats. Conducting similar studies on adjacent reefs will eventually lead to a larger-scale map and a deeper understanding of both local and regional reef ecosystems and their processes.

Although this new mapping technology doesn’t necessarily represent the natural state of any ecosystem, it can at least provide a baseline against which we can compare future observations, thus establishing a powerful framework for conservation and management. And that’s what the map of Peterson Cay’s coral reef will do. By combining traditional observational recordings with precise spatial information, it provides new insight into the fascinating world just below the water’s surface.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Florida’s Wild Dolphins Reveal Unique Social Feeding Behavior

For the last decade, the Taras Oceanographic Foundation, under a general authority of the National Marine Fisheries Service, has been conducting dolphin surveys in Palm Beach County. We position or boat within three miles from shore, and travel at slow speed, until we see dolphins. We will then follow the dolphins long enough to photograph each dolphin and document their behavior. And although we have studied wild dolphins for decades, we still find new and different behaviors that are remarkable.

There are days when bait fish seem to fall fro m the sky. On those special days, when the seas are flat, we watch all kin ds of fish jumping out of the water; some high in the air in a single arc, others low and repeatedly as they travel some distance. Flying fish routinely glide, with ease, for several meters. Ballyhoo and Bonita will jump to avoid being eaten. Every once in a while, a clever dolphin will take advantage of these jumping fish; a clever dolphin like Odyssey, and her offspring.
Odyssey was conducting a master class in the art of catching fish. And when I say ‘catching fish’ I mean CATCHING fish. She was throwing a fish into the air, and artfully catching with in her mouth. She demonstrated the process a few times for her calf, and then did something remarkable.

She bit off the head of the fish, before throwing the body in the air, for her calf to catch. We could not help but make the comparison of a mother cutting the crust off a sandwich, before serving it to her child. But it is more than that; she was keeping her calf safe.
For the significance of this simple act, we need to first ex­ amine the basic anatomy of a fish. Fish use gills to acquire oxygen from the water. These gills are located just at the base of the head. When a fish breathes, it draws in a mouthful of water and pulls the sides of its throat together, forcing the water through the gill openings, which expand away from the body.

Dolphins do not chew their food. It is imperative, therefore, for a dolphin to swallow their prey, head first. If a fish were eaten tail first, it might expand its gills while passing through the throat of the dolphin and become wedged. In all the necropsies I performed, I once found one dolphin with a fish caught in its throat. The fish was swallow ed tail first, and the res ult was deadly. Back to Odyssey and her calf.
She was biting the heads off the fish, so her calf would not catch the fish backwards and choke to death. She threw the fish body high in the air, and her calf made repeated attempts to make the catch. More likely motivated by the game than the food, the small dolphin was still nursing and probably not too hungry. Over the next few months, as this calf grows, Odyssey will insist it hunt down its own food. The catching strategies learned now, will be all the more important in the future.

But even the best strategies and the most prepared youngster will not grow to be an adult unless there continues to be the abundance and variety of fish to eat. We are currently living through the sixth mass extinction event this planet has experienced. ln the past, these epic occurrences were the result of volcanic eruptions or asteroids striking the earth, but this time they are our own doing.

Why is it important to study dolphins? Sure they are cute and all, but why should anyone support such endeavors? Because in many ways, we are alike. Dolphins eat the fish we eat. They raise their kids to be better citizens and work every day to make a living and support their families. They are the masters of the ocean environment; a subject about which we are remarkably naive. And the ocean is vital to the survival of us both.

Although we continue to harvest the resources the oceans provide, at unsustainable rates, we could learn from the marine mammals how to find areas of highest productivity and hunt selectively. As we increase the noise in the ocean with our recreational watercraft, commercial ships and military exercises, we learn from the dolphins that in the deep ocean, it is by listening and hearing we can have the best vision. Marine mammals are the ocean canaries, warning us about the disastrous effects of pollution and habitat destruction, and they can be our guides to find answers, to questions we have not yet thought to ask about the ocean realm.

It is through the long- term studies like the one we have been carrying out in Palm Beach waters, that dolphins teach us about the ocean, the world and ourselves. We just have to keep going to school.

 

***
We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world. Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective. The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

The Objectives of Marine Mammal Research

The aim of marine mammal research is to develop progressive knowledge and understanding of their biology, adaptations, behavior and ecology, which will lead to better protection of species and their habitats, contributing to biodiversity in such a way that a sustainable use of the sea becomes possible.  Furthermore, such research strives to understand how we affect their lives and how we can gain from them, e.g. through tourism.

If you understand dolphin echolocation and how it works, then you have the tools to apply that knowledge.  If you are a conservationist and are concerned about dolphin entanglement in nets, the knowledge allows you to build better fishing nets that will not harm them.  The application of the knowledge depends on what you value: for an academic, to further knowledge and understanding; for an applied researcher, to be able to provide information to managers on the implications of a range of management options, for a conservation biologist: to find ways of ensuring the health of populations.

In the end, all this will contribute to a better understanding of the impact we have on our planet.  You can’t have seven billion people growing and running around on a planet without having some major impacts.  Right now we are making choices we don’t even understand; better to make an informed choice don’t you think?

There are various tools that can be used to achieve this goal, including expanding the knowledge base through biological inventories, research, monitoring, training of professionals, planning (environmental impact assessment), action plans and integrated area management, regulating threats to marine species and ecosystems, establishing protected areas, and ensuring active involvement of citizens in government decision making.  Public education is very important in all conservation efforts.

 

Most of science consists of answering very small questions.  Each one may not have much value in and of itself, but when the whole picture is to be seen, each of the many small pixels of knowledge will be required.  So in the long term, we can expect to truly understand some of the things that are affecting cetaceans and their behavior.  In the short term, however, one cannot expect too much.  Important results in this field are usually gained through long-term research, which will then constitute the wisdom and the power to make the best possible decisions about the future.  Research aimed only at solving a specific, well-understood short-term problem is not going to provide us with the answers we need ten or twenty years from now.  We need to commit some fraction of our resources, our dollars, to basic science, understanding that it is a risk-taking investment; not all science hunches pay off, but when they pay off, they pay off big.  And this investment of resources should not be done because it is `en vogue’ to be concerned about the animals, the oceans and the planet, but because it is intellectually and morally the correct thing to do.  By better understanding one group of marine creatures, with which we compete for resources – prey and habitat -, we may be able to better manage our affairs on this planet.

In sum, excellent research provides several results: Firstly, it leads to a deeper understanding of the world and its basic mechanisms of function, or in other words, an increased appreciation of the world in which we live.  Secondly, it provides a baseline of data against which we can measure changes and information that can be put to practical use, thus reducing our impact on these animals and their environment.  And third, the advancement of knowledge usually entrains an increase in public awareness and then support from the general public, which is a crucial determinant for maintaining biodiversity, the survival of the variety of species and their habitats and a wise resource use by man.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Why Oceans Are Important To Us

In his charming and insightful book called ‘The Immense Journey’, biologist-author Loren Eiseley said:

“We have many ways to quench our thirst, but no way to overcome our need for water…its substance reaches everywhere; it touches the past and prepares the future; it moves under the poles and wanders thinly in the heights of the air…If there is magic on the planet, it is contained in water.”

There are about 326 million cubic miles (=525 cubic kilometers) of water on this planet. The largest percentage, 97.4% is found in the oceans.  2.6% is on land and most of this is locked in the great polar ice caps. All the life-sustainable fresh water found in the worlds lakes, creeks, streams, and rivers and in the groundwater or aquifers, represents less than 0.01 percent of the total. Water is virtually and intrinsically important!

The world’s oceans cover 71% of the Earth’s surface. Life probably originated in the seas, and life still depends largely on their well-functioning. Most of the solar heat that hits this planet is stored there, most of the conversion of sunlight to food energy by plants takes place in water, most of the world’s fresh supplies of oxygen are produced by microscopic plant-like organisms floating near the surface of the oceans, the global climate is regulated, and a lot of our food protein comes from the sea. The Ocean is also one of the most important traffic routes and a sink for a large portion of our wastes. It provides natural resources and, to an increasing extent, raw materials for the pharmaceutical industry.

In addition to these primarily material aspects, the ocean has acquired significant value as a recreational area. More and more people seek recreation and relaxation in, or near the water. Marine tourism is one of the most rapidly growing branches of industry.  Proximity to the sea has great value, reflected in incredibly high real estate prices for seashore property. Roughly 70% of the world population lives within 200 km of the coast, and two third of all metropolises, having a population of more than 2.5 million, are situated on the coast. Between 100 and 200 million people live in coastal zones below storm tidal level.  Ignoring these fragile and vital eco-systems can only spell disaster.

From the earliest days of human settlements, up to the industrial revolution, waterways have been a major means of transport. Cities and industrial plants, even after the industrial revolution, have been located on these waterways, because many of them require water for manufacturing and/or shipping to coastal ports. With very few exceptions, all streams and rivers flow into other rivers or into lakes, which, in turn, have outlets to wetlands, bays, estuaries, seas and oceans.

The aggregation of wastes flowing into our streams and estuaries, and ultimately into the oceans, is a biochemical soup carrying thousands of different chemicals. Rainwater and snow melt, that run off from congested urban areas, collect street oil and chemicals as well as many metals. Runoff into streams and rivers adjacent to farmlands carry tons of suspended particles of soil. This is not only damaging to fish but can also choke-out submerged oxygen-giving grasses in coastal woodlands, bays or estuaries. Runoff from timber harvesting activities, especially clear cutting, deprives the exposed land of thousands of tons of soil and has caused the pollution of some of the most valuable spawning grounds for trout and salmon in the Pacific Northwest.

Runoff of the nitrogen and phosphorus components of fertilizers leads to an oxygen depletion in the water. This depletion has caused massive fish die-offs and can wipe out whole areas of marine habitat necessary to maintain the life cycles of myriads of species of aquatic life. Other chemicals, such as DDT can accumulate in the tissues of marine animals to toxic levels, even if they live their entire lives in remote parts of the globe (Antarctic penguins and seal species for example).

The incredibly rapid petrochemical revolution, which forms the basis for this modern age of plastic, has spawned a nearly exponential increase in major sources of pollution affecting our stratosphere, atmosphere, lands and waters. We build this material to last and now, after years of dumping it into the sea, it has come back to haunt us, killing and maiming marine life. Plastic is believed to be the most far-reaching man-made threat facing many marine species, annually killing or maiming tens of thousands of seabirds, seals, sea lions and sea otters, as well as hundreds of whales, dolphins, porpoises and turtles.

We know that the deadly flows we are adding to our oceans do not just disappear.  Many of them do not even decay. In all, this mixture can kill plant and marine life, contaminate food supplies and endanger people and entire coastal communities. With over 50% of the US population now living within 100 miles of our coastlines, it is no accident that the highest chemical contamination can be found in waters of the largest of the cities on these coasts – Boston, New York, New Orleans, Los Angeles, San Francisco and Seattle.

What long-term effects and future afflictions are in store for our “water planet” is beyond our present knowledge, but there is doubt that global environmental changes will have serious effects on the oceans will pose great problems for many countries, and the very existence of some island states may even be threatened. Given the different functions oceans and coastal areas have for human society, conflicts between different interests, such as utilization and protection, will arise.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Marine Litter

People create a lot of waste and even though it can be processed, recycled and properly disposed of a significant amount of it escapes into the environment. When we talk of marine debris, also known as marine litter, then we refer to human-created solid waste that deliberately or accidentally was released in a lake, river, waterway, sea or the ocean. By broad estimates, 10% of what will become marine litter is thrown away by people directly on the beach, but that 80% actually comes from inland sources, from it is transported by wind, rain and rivers into the oceans of the world.

Marine debris comes in all sizes: from wrecked vessels, large cargo containers and fishing nets, to plastic bags and soda bottles, cloth fibers and plastic beads. Similarly, the materials and substances vary across a broad spectrum: Glass, metal, cardboard, paper and textile make up about 25%, while 75% of all marine litter is composed of various forms of plastic polymers. The most common are plastic bags, beverage and food containers and the very tiny so-called mermaid spheres, which are very small plastic pellets that are used to manufacture all sorts of different plastics and shipped around the world in huge quantities. By all accounts, billions of them have found their way into the environment.

Most people are still wondering about why they should be concerned. After all, the ocean is vast, and it is hard to imagine any human activities could significantly disturb it. So let me point out some of the reasons why we should be concerned.

First, ocean litter negatively impact marine life and marine biodiversity and resilience. Litter moves with ocean currents, winds and tides. As a result what we find on our beaches constitutes only a tiny fraction while most of it stays at sea where in some areas we already find six times more micro plastics than plankton. Furthermore, the plastic accumulated through the food chain and poses significant health risk to many species who are unable to distinguish between plastic and their regular diet. As a consequence hundreds of thousands of marine animals, from sea birds, to sea turtles, dolphins and whales die every year, and when we study their stomach content, we find anything from tooth brushes and golf balls, to fishing nets. Some of these animals, such as fish, sea turtles and dolphins, get trapped by ghost nets, abandoned fishing gear that drift across the oceans. Other marine debris end of sinking to the sea floor where they can prevent the exchange between water and sediment, eventually suffocating the deep-sea environment and the life that depends on it. And if that was not bad enough, it turns out that marine litter is also a vector disease and invasive species. Algae or mollusks can attach themselves to floating pieces of plastic and then disrupt ecosystems in places far away from their geographical origin.

Secondly, marine litter impacts our economic activities, including fisheries, tourism, shipping and recreation. Data published by the United Nations Environmental Program (UNEP) suggests that the costs associated with marine litter (fisheries, aquaculture, marine tourism and cleanups) amount to about 8 billion dollars a year.

Thirdly, we ought to be concerned because the situation will likely get worse in the coming decades. The worldwide, annual plastic production in the 1950s was about 1.5 million tolls. That figure climbed to 300 million tons by 2014 and is expected to reach 33 billion tons by the year 2050. Unless we drastically reduce the mismanagement and losses, hundreds of millions of tons of waste can be expected to escape into the oceans.

Dealing effectively with the marine litter problem requires a multi-pronged approach. Raising awareness and education people is something we have been doing all along but there is not a lot of data that suggests that these efforts have been successful, i.e. produced tangible outcomes.

Beach Clean-ups, while commendable, are not helping much to resolve the problem. For once, only about 10% of all the ocean litter is found on our beaches, and then it clearly does not tackle the actual source of the problem: our constant overconsumption and generation of waste. The idea that recycling and re-use will solve the marine litter issues is nothing more than illusion. It may buy us some time, but what is really needed is a change to our consumption habits.

In order to have clean seas, we need to make a difference on land. All of us.

***

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Sustainable Coastal Development

Coastlines are where the sea meets land. While they always played an important role in human history, they have increasingly become one of the most desirable living places on the planet. People chose to live near the water for various reasons: a fairly moderate climate influenced by coastal winds, and year-round access to leisure, fishing, and ports for navigation and transportation of goods. For many, the deciding factor evolves around the lifestyle coastal environments provide. In recent decades, affluent urbanites and retirees have begun to move to small existing coastal towns or newly created communities in their search for beautiful, natural surroundings. Recent research, suggesting that people who live closer to the coast are in better health, has only strengthened its appeal.

Sustainability and resilience are becoming increasingly relevant in coastal development. While the concept of sustainability has been around since the 1990s, resilience is a relatively new concept: it represents a holistic, anticipatory and proactive approach that values adaptability to change.

Change is constant and inevitable, and we are witnessing the beginnings of some dramatic changes related to temperature and sea level rise. In fact, we can observe the effects already, including an increase in daily temperatures, change in rainfall patterns and extreme weather events, sea level rise, increase in sea surface temperature, changes in hydrology, and loss of biodiversity. The associated impacts will be felt sooner than originally anticipated and will affect the return on the investments made in the coming years. Sea-level rise threatens low-lying shores, especially those in storm paths, but even rugged coasts may experience significant changes in weather patterns. Resulting economic costs and damages to resorts, airports, local tourism, etc. in the Caribbean alone are estimated to exceed 20 billion dollars (US) per year. By contrast, proactive adaptation is far less expensive, with $1 in adaptation preventing $4 in economic losses.

Adaptation means to create coastal built environments that can withstand higher seas and stronger storm surges through sensible choices in terms of siting, setbacks and elevations. With regard to infrastructure such as energy, water, and wastewater treatment, it appears advantageous to employ more decentralized, smaller and flexible systems that can be repeatedly adapted over time to the changing physical conditions of coastal environments. Research and education are useful tools to develop adaption measures related to land use, changes in hydrology, exposure to tropical vector diseases, seal level rise, extreme weather events, biodiversity and ecosystems (just to name a few) that will result in sustainable and resilient costal developments.

The development of coastal areas will continue to be a desirable undertaking simply by virtue of location, but it is imperative for the future of the planet and our own sake as people to create coastal environments that are resilient, sustainable and economically viable.

And remember:

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Living on the Coast

Nearly 60% of the world’s population lives and works within 100 km of the coast, and a majority of metropolises with a population of more than 2.5 million, are situated at the edge of the sea. People chose to live near the water for various reasons: a fairly moderate climate influenced by coastal winds, and year-round access to leisure, fishing, and ports for navigation and transportation of goods. For many, the deciding factor evolves around the lifestyle coastal environments provide. In recent decades, affluent urbanites and retirees have begun to move to small existing coastal towns or newly created communities in their search for beautiful, natural surroundings. Recent research, suggesting that people who live closer to the coast are in better health, has only strengthened its appeal.

Undoubtedly, the largest influence on coastal development can be traced back to tourism, which represents the world’s largest service industry, supporting 1 in 12 jobs globally and generating $6.5 trillion every year. International travel has increased 40-fold since 1960 and surpassed 1 billion travelers in 2012, with many tourists spending time on the beach, or on the water. In fact, 12 of the 15 top international destinations are countries with coastlines. Sand, sun and sea tourism makes for the largest and most lucrative sector of the tourism industry.

In response to the increasing demand, coastal areas across the globe have seen a great deal of urban and resort development, including large, all-inclusive resorts, small upscale boutique hotels, eco-lodges, marinas, residential (second) homes, and commercial areas. Naturally, these developments often raise environmental and socio-cultural issues, including the modification of the natural landscape, competition for scarce resources, rising real estate prices, potential loss of distinctive character, the displacement of local fishing and farming communities, and the outright destruction of natural jewels, such as mangroves and coral reefs. The promise to create sustainable and resilient developments too often remains unfulfilled, quickly leading to increasing resistance from coastal communities and other stakeholders. Given the diverse ecosystem services coastal systems provide, these conflicts between utilization versus protection are bound to arise, and add to the already existing challenges, from water scarcity, resource shortages and climate change, to social inequities that threaten to destroy the social fabric of many of our communities.

Change is evitable, negative outcomes aren’t. In the past, little if any consideration was given to the importance of the natural and socio-cultural systems in coastal areas that already existed in areas under consideration for new real estate and tourism development projects.

It is encouraging that one of the world’s leading planning and design firms, EDSA in Fort Lauderdale, has begun to develop and employ a more research-based and performance orientated approach that emphasizes sustainability and resiliency when shaping the future of our coastlines.

Because we all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

Read more

Threats to Whales and Dolphins

Whales and dolphins are a vibrant part of the global ecosystem and their populations have been severely affected in various ways.

Many species have been over-hunted in the past, and several populations are reduced to a small fraction of their original levels. They are vulnerable to entanglement in fishing gear and incidental catch in gillnets is one of the most serious threats to marine mammals.  These fishery operations may well cause the extinction of several small cetacean populations within the next few decades, including the Vaquita and Chilean dolphins. Collisions between larger whales and ships (ship strikes) occur with regular frequency and represent a significant cause of death and traumatic injury.  Because toothed whales and dolphins are top predators and thus at a higher tropic level in the food chain, they are especially prone to bio-accumulating toxins, such as heavy metals, persistent organic pollutants (POPs) and endocrine disrupting chemicals (EDCs). However, as recent research has demonstrated, such toxins and pollutants also negatively impact baleen whales.

Another threat to the health of whales and dolphins comes from the petroleum industry. Seismic surveys, which are used to discover oil and gas field situated below the seabed are, at a minimum, suspected to damage the complex hearing system of these marine mammals. Once the oil extraction processes is under way, the negative impacts shift habitat loss and exposure to hydrocarbons, lubricants and outright pollutants and toxins used in the process.

Loss of whale and dolphin habitat is directly linked to increasing human activity in and along marine environments. The aggregation of wastes we allow to flow into our streams and estuaries, and ultimately into the oceans, is a biochemical soup carrying thousands of different chemicals. Rainwater and snow melt, that run off from congested urban areas, collect street oil and chemicals as well as many metals. Runoff into streams and rivers adjacent to farmlands carry tons of suspended particles of soil. This is not only damaging to fish but can also choke-out submerged oxygen-giving grasses in coastal woodlands, bays or estuaries. Runoff from timber harvesting activities, especially clear cutting, deprives the exposed land of thousands of tons of soil and has caused the pollution of some of the most valuable spawning grounds for trout and salmon in the Pacific Northwest. Runoff of the nitrogen and phosphorus components of fertilizers leads to an oxygen depletion in the water. This depletion has caused massive fish die-offs and can wipe out whole areas of marine habitat necessary to maintain the life cycles of myriads of species of aquatic life.

Marine debris is a visible expression of human impact on the marine environment. Debris is more than an aesthetic problem, it poses a real danger. Ocean currents carry milk cartons, toothbrushes, cigarette lighters, and other familiar plastic items around the world. In some areas, such as the Central Pacific Gyre, plastics outnumber plankton seven to one.

The number of marine mammals that die each year due to ingestion and entanglement of debris approaches 100,000 in the North Pacific Ocean alone. Worldwide, 82 of 144 bird species examined contained small debris in their stomachs. Plastic is the most far-reaching man-made threat facing many marine species. Over time, it reacts with sunlight and turns into small plastic polymer molecules. It turns out that these plastic polymers are sponges for DDT, PCBs and other toxins that don’t dissolve in seawater. Plastic pellets have been found to accumulate up to one million times the level of these poisons that are floating in the water itself. These pellets are consumed by baitfish, which in turn are consumed by larger fish, eventually finding their way into the stomachs of large predators, such as dolphins and toothed whales, and our own.

Other human activities, such as the construction of shipping channels and marinas, and the recreational use of coastal areas, including resort development, are likely to have a negative impact on the lives of whales and dolphins using the same areas.

Last but not least, climate change, with its changes of sea temperature, sea level rise, changes in salinity, just to name a few, will undoubtedly change the socio-ecology of whales and dolphins. Species inhabiting the high latitudes, such as bowhead, narwhal, beluga may be the first to feel the impact due to diminishing food resources, such as krill. But other species, such as humpback whales and killer whales will likely experience significant changes in their food supply, resulting in changes of existing migration patterns and a shift of home ranges.

Whales and dolphins are facing enormous challenges and threats. They are the ocean canaries, warning us about the disastrous effects of pollution and habitat destruction, and they can be our guides to where to look for answers about how our oceans work. If we have any philosophical leanings towards preserving these wonderful creatures and the oceans, either for future generations or for its own value, than learning enough to prevent any further damage is crucial.

 

We all depend on a healthy ocean; a healthy ocean depends on us. Let us be the change we would like to see in the world.  Our new Ocean Sentinels Club is proof that conservation can be fun, rewarding and effective.  The Club unites and empowers citizens to advocate for the conservation of dolphins and the marine environment across Palm Beach County, and beyond. Join us. The time is now. It begins with you.

 

Read more